Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Fish Dis ; 46(6): 619-627, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36821594

RESUMO

The intestinal nematode Pseudocapillaria tomentosa in zebrafish (Danio rerio) causes profound intestinal lesions, emaciation and death and is a promoter of a common intestinal cancer in zebrafish. This nematode has been detected in zebrafish from about 15% of the laboratories. Adult worms are readily detected about 3 weeks after exposure by either histology or wet mount preparations of the intestine, and larval worms are inconsistently observed in fish before this time. A quantitative PCR (qPCR) test was recently developed to detect the worm in fish and water, and here we determined that the test on zebrafish intestines was effective for earlier detection. Four lines of zebrafish (AB, TU, 5D and Casper) were experimentally infected and evaluated by wet mounts and qPCR at 8, 15-, 22-, 31- and 44-day post-exposure (dpe). At the first two time points, only 8% of the wet mounts from exposed fish were identified as infected, while the same intestines screened by qPCR showed 78% positivity, with low and consistent cycle threshold (Ct) values at these times. Wet mounts at later time points showed a high prevalence of infection, but this was still surpassed by qPCR.


Assuntos
Doenças dos Peixes , Nematoides , Animais , Peixe-Zebra , Doenças dos Peixes/diagnóstico , Intestinos , Reação em Cadeia da Polimerase
2.
Aquaculture ; 5642023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38562455

RESUMO

Environmental DNA (eDNA) water assays are beginning to be implemented for many important pathogens in confined aquaculture systems. Recirculating systems are rapidly being developed for fin fish aquaculture. Zebrafish (Danio rerio) are reared in these systems, and Pseudoloma neurophilia (Microsporidia) represents a serious challenge for zebrafish research facilities. Diagnosis of the pathogen has traditionally used histology or PCR of tissues with lethal sampling. However, with the development of a nonlethal assay to detect P. neurophilia in tank water, facilities will be able to integrate the assay into routine surveillance efforts to couple with their established protocols. Here, we first describe a modified protocol to extract and quantify parasite DNA from the environment for nonlethal detection of P. neurophilia in adult zebrafish populations. Using this modified assay, we then evaluated water samples from a longitudinal experimental infection study, targeting timepoints during initial infection. The parasite was detectable in the water immediately after initial exposure until week 4 post exposure (pe), when the parasite was undetectable until 7 weeks pe. After that time, the parasite was sporadically detected in the water for the 10-month study, likely correlating with the lifecycle of the parasite. Using water samples from the Zebrafish International Resource Center, we also validated the clinical relevance of the assay in a large zebrafish facility. The integration of this assay at ZIRC will significantly compliment surveillance and control efforts for the microsporidian parasite.

3.
J Parasitol ; 108(6): 527-538, 2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-36326809

RESUMO

Detecting the presence of important parasites within a host and its environment is critical to understanding the dynamics that influence a pathogen's ability to persist, while accurate detection is also essential for the implementation of effective control strategies. Pseudoloma neurophilia is the most common pathogen reported in zebrafish (Danio rerio) research facilities. The only assays currently available for P. neurophilia are through lethal sampling, often requiring euthanasia of the entire population for accurate estimates of prevalence in small populations. We present a non-lethal screening method to detect P. neurophilia in tank water based on the detection of environmental DNA (eDNA) from this microsporidium, using a previously developed qPCR assay that was adapted to the digital PCR (dPCR) platform to complement current surveillance protocols. Using the generated dPCR data, a multi-state occupancy model was also implemented to predict the probability of detecting the microsporidium in tank water under different flow regimes and pathogen prevalence. The occupancy model revealed that samples collected in static conditions were more informative than samples collected from flow-through conditions, with a probability of detection at 80% and 47%, respectively. There was also a positive correlation between the frequency of detection in water and prevalence in fish based on qPCR.


Assuntos
DNA Ambiental , Doenças dos Peixes , Microsporidiose , Parasitos , Animais , Peixe-Zebra , Microsporidiose/diagnóstico , Microsporidiose/epidemiologia , Microsporidiose/veterinária , DNA Ambiental/genética , Doenças dos Peixes/diagnóstico , Doenças dos Peixes/epidemiologia , Doenças dos Peixes/parasitologia , Probabilidade , Água
4.
J Fish Dis ; 45(10): 1463-1475, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35749556

RESUMO

Pseudoloma neurophilia is a critical threat to the zebrafish (Danio rerio) model, as it is the most common infectious agent found in research facilities. In this study, our objectives were two-fold: (1) compare the application of diagnostic tools for P. neurophilia and (2) track the progression of infection using PCR and histology. The first experiment showed that whole-body analysis by qPCR (WB-qPCR) can be a standardized process, providing a streamlined diagnostic protocol, without the need for extraction of specific tissues. Evaluating the course of infection in experimentally infected fish, we showed key dynamics in infection. Starting with a low dose exposure of 8000 spores/fish, the prevalence remained low until 92 days post-exposure (dpe), followed by a 30%-40% prevalence by histology or 40%-90% by PCR until the end of the experiment at 334 dpe. WB-qPCR positively detected infection in more fish than histology throughout the study, as WB-qPCR detected the parasite as early as 4 dpe, whereas it was undetected by histology until 92 dpe. We also added a second slide for histologic analyses, showing an increase in detection rate from 24% to 26% when we combined all data from our experiments, but this increase was not statistically significant.


Assuntos
Doenças dos Peixes , Microsporidiose , Animais , Doenças dos Peixes/diagnóstico , Doenças dos Peixes/parasitologia , Microsporídios , Microsporidiose/diagnóstico , Microsporidiose/veterinária , Reação em Cadeia da Polimerase/veterinária , Peixe-Zebra
5.
Exp Suppl ; 114: 285-317, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35544007

RESUMO

There have been several significant new findings regarding Microsporidia of fishes over the last decade. Here we provide an update on new taxa, new hosts and new diseases in captive and wild fishes since 2013. The importance of microsporidiosis continues to increase with the rapid growth of finfish aquaculture and the dramatic increase in the use of zebrafish as a model in biomedical research. In addition to reviewing new taxa and microsporidian diseases, we include discussions on advances with diagnostic methods, impacts of microsporidia on fish beyond morbidity and mortality, novel findings with transmission and invertebrate hosts, and a summary of the phylogenetics of fish microsporidia.


Assuntos
Microsporídios , Microsporidiose , Animais , Aquicultura , Microsporídios/genética , Microsporidiose/genética , Filogenia , Peixe-Zebra
6.
Heliyon ; 6(2): e03507, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32140606

RESUMO

Zebrafish have been found to be the premier model organism in biological and biomedical research, specifically offering many advantages in developmental biology and genetics. The zebrafish (Danio rerio) has the ability to regenerate its spinal cord after injury. However, the complete molecular and cellular mechanisms behind glial bridge formation in zebrafish remains unclear. In our review paper, we examine the extracellular and intracellular molecular signaling factors that control zebrafish glial cell bridging and glial cell development in the forebrain. The interplay between initiating and terminating molecular feedback cycles deserve future investigations during glial cell growth, movement, and differentiation.

7.
Obesity (Silver Spring) ; 26(6): 1026-1033, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29707908

RESUMO

OBJECTIVE: Ad libitum high-fat diets (HFDs) spontaneously increase caloric intake in rodents, which correlates positively with weight gain. However, it remains unclear why rodents overeat HFDs. This paper investigated how changing the proportion of diet that came from HFDs might alter daily caloric intake in mice. METHODS: Mice were given 25%, 50%, or 90% of their daily caloric need from an HFD, along with ad libitum access to a low-fat rodent chow diet. Food intake was measured daily to determine how these HFD supplements impacted total daily caloric intake. Follow-up experiments addressed the timing of HFD feeding. RESULTS: HFD supplements did not alter total caloric intake or body weight. In a follow-up experiment, mice consumed approximately 50% of their daily caloric need from an HFD in 30 minutes during the light cycle, a time when mice do not normally consume food. CONCLUSIONS: An HFD did not disrupt regulation of total daily caloric intake, even when up to 90% of total calories came from the HFD. However, HFDs increased daily caloric intake when provided ad libitum and were readily consumed by mice outside of their normal feeding cycle. Ad libitum HFDs appear to induce overconsumption beyond the mechanisms that regulate daily caloric intake.


Assuntos
Dieta Hiperlipídica/psicologia , Ingestão de Alimentos , Ingestão de Energia , Comportamento Alimentar , Hiperfagia/etiologia , Animais , Peso Corporal , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Aumento de Peso
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA